NAME

ROLL NO.

	INDIAN SCHOOL MUSCAT MIDDLE SECTION HALF YEARLY EXAMINATION 2019–20	NABET
	SUBJECT - MATHEMATICS	Code:MXM05
CLASS :8		Time Allotted: 2 ¹ / ₂ hrs
23.09.2019		Max .Marks: 80
General Instructions	S.	

1. The question paper comprises of three sections **A**, **B**, **C** and **D**. You have to **attempt all** the sections.

2. All the questions are **compulsory**.

3. All the answers should be written in the **answer sheet** provided.

Q.NO1	<u>SECTION 'A'–('1' MARK EACH) – TOTAL – 20 MARKS</u>	Marks
(a)	Each exterior angle of a regular polygon with 15 sides is b)24 ⁰	1
(b)	$\sqrt[3]{343} + \sqrt{169} =$ c)20	1
(c)	If two quantities 'r' and 's' vary inversely, then the constant of proportion is a) r × s	1
(d)	A quadrilateral PQRS with PQ=QR=RS=SP and PR ≠ QS is a b) Rhombus	1
(e)	The property used in $\frac{-1}{6} \times (-6) = (-6) \times \frac{-1}{6} = 1$ isa) Multiplicative Inverse	1
(f)	Rational number not in between $\frac{1}{3}$ and $\frac{1}{2}$ is d) 2	1
(g)	The number of non-perfect square numbers between 75 ² and 76 ² is d) 150	1
(h)	Which of the following is a square number as well as a cube numberc)729	1
(i)	The least number by which $3^2 \times 7^3 \times 5$ should be multiplied to make the resulting product a perfect cube is d) 75	1
(j)	The product of 17x and 2xy is b)34 x^2y	1
(k)	Find the sum of $1\frac{2}{3}$ and its additive inverse Ans-0	1
(I)	Find the measure of each exterior angle of a regular octagon Ans-360÷8=45 ⁰	1
(m)	Express 5.067×10 ⁻³ in usual form Ans-0.005067	1
(n)	Write the multiplicative inverse of(-5) ⁻³ Ans-(-5) ³	1
(0)	Write the coefficient of " xy^2 " in the expression $7x - 6xy^2 + 5y + 3$ is Ans-(-6)	1
(p)	Find the cost of 20 stamps, if the cost of 15 stamps is Rs 300 $\frac{20}{x} = \frac{15}{300}$	1

	$\frac{20 \times 300}{15}$ =Rs 400	
(q)	Find ³ √0.000216 Ans-0.06	1
(r)	Find the value of $(-5)^{-1} \times (3)^{-1}$ Ans- $(-15)^{-1} = \frac{-1}{15}$	1
(s)	Find the value of $\frac{1}{4}x^2y(12x - 4y^2)$ 3x ³ y-x ² y ²	1
(t)	By what least number should 54 be divided to make it a perfect cube? 54=2×3×3×3 The least number to be divided=2	1

Q.NO	<u>SECTION 'B'-('2' MARKS EACH) - TOTAL - 12 MARKS</u>	Marks
(2)	Find the each interior angle of a regular nonagon Each interior angle= sum \div Number=(9-2)×180 =140 ⁰ (1+1) 9	2
(3)	Find the square root of 2009 by long division $4 \overline{)2209}$ $4 \overline{)2209}$ 16 $7 \overline{)669}$ 669	2
(4)	Simplify (2ab+5a)-(6ab+3a)+(18ab-2a) 2ab+5a-6ab-3a+18ab-2a=14ab(1+1)	2
(5)	Find the value of 'a' if $7^{-a+3} = \frac{1}{343}$ $7^{-a+3} = 7^{-3} - \dots - \left(\frac{1}{2}\right)$ $-a+3=-3 - \dots - \left(\frac{1}{2}\right)$ $-a=-6 - \dots - \left(\frac{1}{2}\right)$	2

Q.NO	<u>SECTION 'C'–('3' MARKS EACH) – TOTAL – 24 MARKS</u>	Marks
(8)	Find the number of diagonals of a regular polygon with each exterior angle 40° No.of sides= $360 \div 40 = 9$ (1) No.of diagonals=n(n-3) \div 2 $\left(\frac{1}{2}\right)$ $=9(9-3) \div 2$ $\left(\frac{1}{2}\right)$ $=9 \times 6 \div 2$ $\left(\frac{1}{2}\right)$ $=9 \times 3 = 27$ $\left(\frac{1}{2}\right)$	3

(12)	If $x \propto \frac{1}{y}$, find the value of 'm' and 'n' $\boxed{x \ m \ 100 \ 50}$ $\boxed{y \ 40 \ n \ 20}$ Since $x \propto \frac{1}{y}$, $m \times 40 = 100 \times n = 50 \times 20$ $m \times 40 = 50 \times 20$ $m = 50 \times 20 \div 40$ $= 25 \left(1\frac{1}{2}\right)$ $100 \times n = 50 \times 20$ $n = 50 \times 20 \div 100$ $= 10 \left(1\frac{1}{2}\right)$	3
(13)	Simplify using properties: $\left(\frac{-3}{8} \times \frac{-2}{7}\right) - \frac{1}{21} - \left(\frac{5}{8} \times \frac{-2}{7}\right)$ $\frac{-2}{7} \times \left[\frac{-3}{8} - \frac{5}{8}\right] - \frac{1}{21}$ $\frac{-2}{7} \times \frac{-8}{8} - \frac{1}{21} = \frac{-2}{7} \times -1 - \frac{1}{21} - \left(1\frac{1}{2}\right)$ $= \frac{2}{7} - \frac{1}{21}$ $= \frac{6}{21} - \frac{1}{21} = \frac{5}{21} - \left(1\frac{1}{2}\right)$	3
(14)	Simplify by using laws of exponents $[(7^3)^4 \div (7^9)] + [3^2 \times 5^0]$ = $(7^{12} \div 7^9) + 3^2 \times 1 - (1)$ = $7^{12 \cdot 9} + 3^2 - [\frac{1}{2}]$ = $7^3 + 3^2 - [\frac{1}{2}]$ = $343 + 9 - [\frac{1}{2}]$ = $352 - [\frac{1}{2}]$	3
(15)	Find the product of (5m+6m ² n) and (2mn-3) (5m+6m ² n)×(2mn-3) $\left[\frac{1}{2}\right]$	3

Q.NO	SECTION 'D'-('4' MARKS EACH) - TOTAL - 24 MARKS	Marks
(16)	a) Find 4 rational numbers in between $\frac{2}{5}$ and $\frac{3}{7}$ $\frac{2 \times 7}{5 \times 7} = \frac{14}{35}$ and $\frac{3 \times 3}{7 \times 3} = \frac{9}{35}$ 4 Rational numbers between (any four)(2) b) Represent $\frac{3}{-4}$ on the number line Correct number line and representation(2)	4
(17)	Subtract (3y-8)(5y-1) from (40y+15y ²) Step-1: (3y-8)(5y-1)=15y ² -3y-40y+8(1) =15y ² -43y+8[$\frac{1}{2}$] Step-2: (40y+15y ²)-(15y ² -43y+8)(1) =40y+15y ² -15y ² +43y-8(1) =83y-8[$\frac{1}{2}$]	4
(18)	a)Find the least number to be subtracted from 9900 to make it a perfect square $ \begin{array}{c c} 9 & 99 \\ 9 & 9900 \\ 81 \\ 189 & 1800 \\ 1701 \\ 99 \\ \hline \end{array} $ The least number to be subtracted=99 $ \begin{array}{c} 1 \\ 1701 \\ 99 \\ \hline \end{array} $ Proper division	4

	b) Find the Pythagorean triplet if one of the members is 12	
	2m=12 ; m ² -1=6 ² -1=35 ; m ² +1=6 ² +1=37 $\left(1\frac{1}{2}\right)$ m=6	
	: The Pythagorean triplet is (12,35,37) $\left[\frac{1}{2}\right]$	
	8 taps having the same rate of flow fill a tank in $1\frac{1}{2}$ hour. If two taps go out of order how long the	
	Let us take 'x' as the number of pipes and 'y' as the time taken in minutes	
	x 8 6 y 90 ? Forming table and units(2)	
(19)	$x \propto \frac{1}{2}$	4
	y, y ,	
	8×90=6×a[1]	
	[2] a= 8×90÷6=120(1)	
	$\therefore \text{ It takes 2 hours to fill the tank}\left[\frac{1}{2}\right]$	
	Find the smallest square number which is divisible by 5, 15 and 50.	
(20)	Proper division(2)	4
	L.C.M=5×5×3×2 $\left \frac{1}{2}\right $	
	The least square number divisible by 5,15 and $50=5\times3\times2\times3\times2$ (1)	
	=900 12	
	Find the value of the following by using laws of exponents $2^{-1} \times 10^3 \times m^7$	
	a) $\frac{2 \times 10^{-1} \times m}{5^2 \times m^{-1}}$	
(21)	$b)\left[\frac{1}{6}\right]^{-3} + \left[\frac{1}{4}\right]^{-3}$	4

End of the question paper.